
Search-Based Compiler Testing
and Debugging

Lu Zhang
November 17, 2018

Agenda

• A Search-Based Technique for Compiler Test
Generation

• A Search-Based Technique for Compiler
Debugging

2

!"#$%&'()*'+,%-.

Operating
Systems

Compilers

Apps

!!

Safe -critical
Systems

Compiler Testing

Ensure Correctness

/

Automated
test

program
generation

Test Program Generation

A test configuration
(consisting of many options)

Each option directly reflects the
probability of a specific program feature
to be included.

Find bugs
as many

as
possible

Ideal goal

Ø Challenge 1: It is more important to generate test programs that
are more likely to trigger bugs
• what configuration would lead to such test programs

Ø Challenge 2: It is important to improve the diversity of the
generated test programs to cover a wide range of compiler bugs
• swarm testing, randomizing the configuration options could lead

to more bugs being discovered

Our solution: to find a set of bug-revealing and diverse
test configurations

!""#$%&'

Bug space: the space of test programs that
trigger bugs

The whole input space

! Criteria 1: Each test configuration in the desired set should be able
to generate test programs exploring a (large) portion of bug space

! Criteria 2: The set of test configurations should have diversity for
bug detection

!"#$%&'()*#+,-.*/0+-1/2+&&"/0-

option
Program
feature

Control generation

Infer range

PF = {pf1,pf2,...,pfm}
PP = {pp1,pp2,...,ppn}
p = {e1,e2,...,er}
c = {o1,o2,...,or}

!"#$%&'()*#+,-.*/0+-1/2+&&"/0-

The differences reflect the range where failing test programs
are easier to generate while passing test programs are more
difficult to generate to some degree

Emerging patterns: item sets whose supports change significantly
between the two datasets
Big support difference: using the support of an item set on one
dataset to subtract the support of the item set on another
dataset

Diversity Measuring

Using the distance between these feature vectors to measure the diversity of test
programs

C = {c1, c2, . . . , cg}
ci = {oi1, oi2, . . . , oir}
Pi = {pi1,pi2,...,pis}

Intuitively, the generated test programs under a test configuration
tend to concentrate on an area of input space.
• HDTest first sets a group center for these generated test programs, and

then computes the distance between different group centers.
• Manhattan distance

PSO-based Searching

• Expected output: a set of diverse test configurations exploring the whole bug
space

• Search space: inferred range for each option
• Fitness function: diversity

• After producing a set of bug-revealing and diverse test configurations, HDTest
randomly selects a test configuration from the set to generate a test program.

Evaluation

GCC-4.4.0
GCC-4.5.0
GCC-4.6.0
LLVM-2.6
LLVM-6.0.1

GCC-4.3.0

• RQ1: How does HDTest perform compared with existing compiler test-program
generation approaches?

• RQ2: Does HDTest perform well in different scenarios (including cross-version
and cross-compiler scenarios)?

• RQ3: Does HDTest perform well for the latest release compiler version?

Compared approaches: DefaultTest & SwarmTest

!"#$%&'()'*%+%,+%*'$"-.

Achieving 75.00% and 145.00% improvements compared
with DefaultTest and SwarmTest

!"#$%&'()'"*+,"% $"-.

HDTest : 63.26% (31 out of 49)
DefaultTest : 32.14% (9 out of 28)
SwarmTest : 50.00% (10 out of 20)

!"#$%&'$()%*(%+$)$,)"(-%$.,/%01-%

Speedup

Median speedups of HDTest
compared with DefaultTest and
SwarmTest are 68.86% and
74.14%

Debugging Compilers

! !"#$%&'()*+,-).(')/'(0)1%22%3+&4)4")1'*+,
" 5"-4)3"#$%&'()*+,-).(')1''$)*+,-

! 67,78)"$4%#%9.4%":)*+,-

" !"#$%&'(-).(')&.(,'
! !"#$%&%:,).)$(",(.#)%:/"&/'-).)&"4)"2)3"#$%&'()2%&'-

" !"#$%&.4%":)%-)4%#';3":-+#%:,
" 5.:+.&)1'*+,,%:,)4""&-).(')(.('&0)+-'2+&

<=

!"#$%&'()"

! *+)%,-./ 01"#)(&2".3,&34%"3$5",$46
" 7#$68&"&#),&42&+"##$68&,)#,#&9$:):;&<$,6)##&,)#,#=&,4&

-)/4>)&#.#+$%$46&42&>"-$4.#&+"-,#&$6&,?)&%4/+$3)-
" @4,&"224-("13)&,4&?">)&"&3"-8)&#),&42&<$,6)##&,)#,#

! 7#$68&463A&?$8?0B."3$,A&<$,6)##&,)#,#

CD

!"#$%"#&'()"'*))+',#$-%..'/%.$.

• 0&12'3#$-%..'$%.$'.2)45+'.2&"%'&'.#6#5&"'
1)67#5%"'%8%14$#)-'$"&1%'3#$2'$2%'(#-9'$%.$

• ,#$-%..'$%.$.'.2)45++#((%"'6412'(")6'%&12'
)$2%"'#-'$2%#"'1)67#5%"'%8%14$#)-'$"&1%.

:;

Marple (Our Approach)

• Mutating the failing test program to obtain
the witness test programs
– Skeletal Program Mutation

• Using an adaptive process to control the
quality of the witness test programs

18

Skeletal Program Mutation

19

Seed Program Selection

• From first order mutations to high order
mutations
– The higher order, the more different from the

failing test program
• Lower order mutations having priority
– Aiming to have similar compiler execution traces

with the failing test

20

How to obtain passing test programs
with low cost?

• Relying more on mutation rules with better
performance
– Markov Chain Monte Carlo Methods
• Recording the previous performance
• Rules with better performance having better chance of

being selected

21

!""#$"%&'()*+%,$-./0,1'2'().
3%4204%&'()

! 3%4204%&')".,0,1'2'().5%40$,.%&.%.6')$#.
4$5$4

! /077')".01.&8$.,0,1'2'().5%40$,.%&.&8$.
6')$#.4$5$4.&(.6(#7.&8$.,0,1'2'().5%40$,.%&.
%.2(%#,$#.4$5$4

99

Evaluation

• 45 GCC bugs and 45 LLVM bugs
– Corresponding to 45 buggy GCC versions and 45

buggy LLVM versions
• On Average
– A GCC buggy version has 1,588 files with 1,414K

LOC
– An LLVM buggy version has 3,507 files with 1,431K

LOC

23

Results

24

Practicability

! A small survey with 7 compiler developers
" Sending out 10 requests

! 6 developers confirming that compiler
debugging starts with identifying the faulty
file

! 6 developers considering our tool of practical
value

25

Thank You!

26

