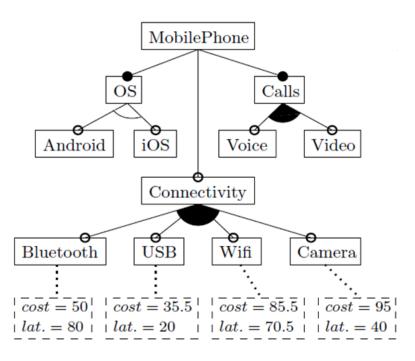
To Preserve or Not to Preserve Invalid Solutions in Search-Based Software Engineering: A Case Study in Cloud Cost Optimization

Jianmei Guo

Alibaba Group

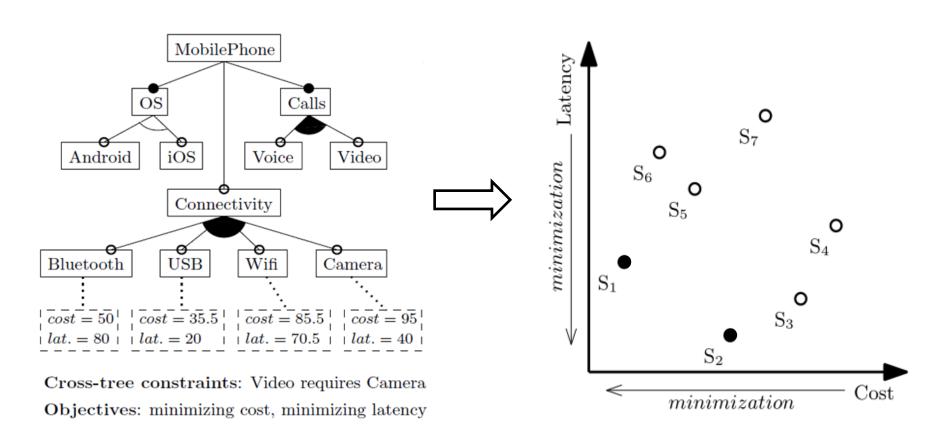
2018.11.17 @CSBSE

Search-based software engineering (SBSE)


Search-based software engineering (SBSE)

Should we preserve invalid solutions during the search?

Outline


- A case study in software produce lines (SPLs)
 - SPL optimization problem
 - Five algorithm variants based on the state-of-the-art
 - Seven real-world subjects (a particular one in cloud cost optimization)
- Three potential limitations of preserving invalid solutions
- Empirical guidance on how to preserve valid solutions
 - How to choose the population for performance evaluation?
 - Should we keep valid solutions in the initial population?
 - Should we fix invalid solutions after mutation?
 - Should we preserve valid solutions all along the way?
 - Should we preserve invalid solutions during the search?

SPL Optimization Problem

Cross-tree constraints: Video requires Camera Objectives: minimizing cost, minimizing latency

SPL Optimization Problem

A multi-objective combinatorial optimization problem

Five Algorithm Variants

- Multi-objective evolutionary algorithms (MOEAs)
 - IBEA [Sayyad et al., ICSE'13, ASE'13]
 - SATIBEA [Henard et al., ICSE'15]

Five Algorithm Variants

- Multi-objective evolutionary algorithms (MOEAs)
 - IBEA [Sayyad et al., ICSE'13, ASE'13]
 - SATIBEA [Henard et al., ICSE'15]

Algorithm	λ	δ	TIP							
SATIBEA	0.001	0.02	random							
SATIBEAv1	0.001	0.02	valid							
SATIBEAv2	0.001	0.02	random + rich seed							
SATIBEAv3	1	1	random							
SATIBEAv4	0.001	1	random							
SATIBEAv5	1	1	valid							
Mutation Probability of using SAT Type of initial solving for mutation population										

Five Algorithm Variants

Multi-objective evolutionary algorithms (MOEAs)

Algorithm	λ	δ	TIP
SATIBEA	0.001	0.02	random
SATIBEAv1	0.001	0.02	valid
SATIBEAv2	0.001	0.02	random + rich seed
SATIBEAv3	1	1	random
SATIBEAv4	0.001	1	random
SATIBEAv5	1	1	valid

Preserving validity "all along the way" by incorporating a subroutine that resolves non-Boolean constraints over integer or real-number variables together with arithmetic or relational operators

Seven Subjects

- Five largest SPLs hitherto reported in the literature
- Two SPLs with realistic values and constraints of attributes

SPL	Version	#Features	#CTC	#Attr	Type of Attr Values	#Attr Constraints
ECos	3.0	1,244	3,146	3	synthetic	N/A
FREEBSD	8.0.0	1,396	62,183	3	synthetic	N/A
Fiasco	2011081207	1,638	5,228	3	synthetic	N/A
uClinux	20100825	1,850	2,468	3	synthetic	N/A
LINUX	2.6.28.6	6,888	343,944	3	synthetic	N/A
Drupal	7.23	47	23	22	realistic	N/A
AmazonEC2	12 June 2014	81	3,859	17	realistic	17,049

[Henard et al., ICSE'15] [Sánchez et al., Software & Systems Modeling, 2017] [García-Galán et al., Future Generation Comp. Syst., 2016]

Potential Limitations – 1/3

 Ratios of invalid solutions in the final populations produced by state-of-the-art approaches

SPL	IBEA	SATIBEA
еCos	0%	4.94%
FREEBSD	2%	89.02%
Fiasco	0%	63.86%
uClinux	69%	0.02%
Linux	100%	81.83%

IBEA [Sayyad et al., ICSE'13, ASE'13] SATIBEA [Henard et al., ICSE'15]

Potential Limitations – 2/3

Performance evaluation depends mainly on the metrics calculated on the **population** produced

Including invalid solutions

Excluding invalid solutions

SATIBEAv1

SPL	Slatnic	SATIN	EA (40)	SATING.	Art (rt)	SATBIE	Asc2 (sc2)	ve VS	¥1	v675	42	vt VS	42
		Median	Meun	Median	Mean	Median	Meun	p-value	\dot{A}_{42}	probe	$\dot{A}_{\rm G}$	probe	\dot{A}_{12}
#Cos	HV.	2.82%e-1	2.8172e-1	2.8159e-1	2.8131e-1	2.8081e-1	2800e0	3.2115e-1	0.57K	142We-1	0.006	6.52Ne-1	9.534
		6.7436e-2	6.9628e-2	7.1179e-2	7.5257e-2	7.546fe-2	T19994r-2	9.0401m2	0.372	3.9504r-1	1.0%	53HSe1	8.536
	IGD.	5.1043+4	5.0868e-6	4.9895e-4	4.9895e-4	530994-4	5.0579e-6	6.3110e-2	0.640	6,298hr1	9.536	2.257e-1	0.404
	ER	2.50(7e-0	2.4750e-1	2.6210e-1	2.5367e-1	2,2607e-0	24121+1	4.5123e-1	9.445	MEDIC	9.529	285te-1	0.529
	GS-	8.7907e-1	8.9250e-0	9.0625e-1	9.0405e-1	5.5694r-1	5.50%±1	3.255br-1	9.426	1007br-0	0.509	1.1199e-1	8.625
	PFS	368	367.76	168	168.47	347	368.6	8.8238e-1	0.488	1970+1	147	9.7H0e-I	0.495
weedsD	HV.	2.6283e-1	24289e-1	24529e-1	2.6497e-1	24300r-0	24577e-1	6-2027e-4	0.312	1.710fe-0	4,900	1.3816e-2	0.680
		6.6623+-2	6.8798e-2	7.0486e-2	1.89TTe-2	6.99E+2	6.8553e-2	2.6962e-1	0.479	16769-1	9.677	43123r-1	0.539
	KID	4.5240r-4	4.525te-4	4.5713e-4	4.5446e-4	43575e-4	4.8933+4	6.7330e-1	0.465	\$1000e2	9967	4.78He-Z	0.635
	ER.	LAKES-1	1.6880e-1	1.0863e-1	1,2325e-1	1.5494c-1	1.967e-1	3.7576e-3	0.718	1.7989e-1	0.396	1.5039e-4	0.234
	CS.	8.7730e-0	9.0026e-0	8.9863e-1	9.38%e-1	93694-9	9.258%+1	2.1700r-1	0.407	4.1086±2	6.768	4.8250r-1	0.443
	PFS	230	218.00	259	205.6	229.5	218.9	4.4130e-1	0.358	1,6HQ+1	1479	2899e-1	0.425
FLASCO	Hz.	2.469e-1	2.461fe-1	2.4390e-1	2.4415e-1	2.4360e-1	2.66thr-1	3.4029=1	6.572	2 (000-1	1,586	8.7665e-1	9.512
		1.007e-0	1.058%e-0	1.0960e-1	1.1429e-1	1.0746e-0	1.0793e-0	2.4425e-2	0.330	8.902Ne-1	9.465	14040+2	0.634
	KD	7.8000r-4	7.61706-6	8.1268e-6	8.1795e-4	7,6501e-4	7.8700e-4	3.6479e-2	0.342	5.960a-0	9.403	1.0025+2	0.634
	ER.	2.5833e-1	2.5678e-1	2.7100e-1	2.7500v-1	2.6800e-1	27424r1	4.1179e-1	9.436	5.79(3e-1)	9.69	Asstra-1	8.513
	CS.	6.0607(-)	$6.1292e{-1}$	6.2190e-1	6.26%e-1	6.2803e-0	63603e-0	1.6667e-1	0.396	5802Ne-2	0.052	1.mete-1	0.400
	PES	115	139.67	112	101.95	113	115.57	7.3305e-2	8.635	3.8829-1	9,577	3460+1	0.425
Currix	HV.	2.5989e-1	2:90br-1	2.9509e-1	2.9425e-1	2.99464-0	270%-1	4.2019r-1	0.430	2,812%-2	0.666	16799e-3	9.730
		6.6749+2	6.89Qe-2	6.3892e-2	6.41TTe-2	6.2786±2	6.2299e-2	8.281fe-1	8.517	2568e1	0.000	2.768e-1	0.582
	KD	54007e-4	5.89t3e-4	5.5902e-4	5.7363e-4	5.7586e-4	5.7793e-4	4.7652e-1	0.497	15(25(a-1)	0.076	15(3)e-1	8.560
	ER:	3.2007+1	3.2856e-1	3.5500e-1	3.5778e-1	6.0000e-0	4/0023+1	4.9366e-1	9.445	64729-2	6362	21/79e-1	0.400
	GS-	5.8090e-0	5.96%e-1	5.5090e-E	5.8725e-1	5.9410r-1	5.97(Re-)	8.4180e-1	9.514	4.3000e-1	9.80	58114e-1	0.445
	PFS	106	367,50	107	108.2	300	306.57	5.8868e-1	0.450	4.366br-1	140	5356be-1	0.483
ANTE:	HV	2.2424r-1	2.290te-0	2366-1	2.2750r-1	2.2896-1	2.205e-1	4.0330e-3	9.283	1.888e-1	0.521	1.5658e-2	0.680
		1.1176e-1	1.100% I	1.1250e-1	1.0806e-1	1.1003e-0	1.1507e-1	9.30(9e-)	0.307	64573e-1	180	4.385(r)	0.467
	KiD	3.5543e-4	3:5908e-6	3.5583e-6	3.7242+4	3.4973e-4	3:5500r-6	5.4150e-1	0.454	1996e1	9.529	47078e-1	8.552
	ER:	2.4190e-1	2.4680e-1	1.5056e-1	1.6372+1	23743e-1	2.60%+1	1.0279-4	0.068	1,200Fe-1	9,507	3.000e-6	0.250
	GS-	9.8074+1	9.5603e-0	9.51126-1	1.8143+1	9.521fe-0	94709rE	4.3099r-1	0.430	Emme 1	9.508	28578e-1	0.581
	PFS	290	290.03	299	288.2	299.0	288.79	1.3105e-1	0.615	2.0006-1	4.367	4.3907e-1	0.464

SATIBEA

SPL	Mesic	SATBEA (HI)		SATIBLA-1 (+1)		5ATBEA(1)		103511		10 VS 12		11 VS 12	
		Nedion	New	Median	Mean	Median	Meun	p-value	A_{12}	probe	A_{12}	p-value	Áq
аСня	MY	2,9909-1	2.9912+1	2.7889e-1	2.7909e-1	2.7974e-1	2.7955e-1	7.6627e-2	9.437	1.5750r-1	0.612	5.990tp-1	0.8
		6.765e-2	6.9535e-2	7.1178e-2	7.3228e-2	7.6675e-2	T.0878e-2	8.49(3e-2	0.370	3:9926e-1	0.436	4.9630r-1	0.35
	RG5	3.7389e-4	3.7309e-4	3.6890x-4	3.7368e-6	3.7972e-4	3.7867e-4	9.80764-3	0.476	3.7904e-1	0.435	4.5530e-1	0.4
	ER	2,3863e-1	25923r-1	2.5R03r-1	2.5527e-1	2.3355e-1	2.4293e-1	4.7905e-0	0.446	7.2926e-1	0.327	2.8046e-1	0.30
	GS.	5.3HBe-1	5.2656-1	5.130%-1	82515e-1	5.0083e-1	8.0512r-1	1.505%r-1	0.476	4.6943r-1	0.358	2.5805e-1	0.5
	PES	360	168.2	157.5	158.79	158	340.23	3.1403e-0	0.576	7.0043+-1	0.529	6.2514e-1	0.4
FreedSD	1677	2002-2	8140le-2	9.3356e-2	8.5340e-2	5.6607e-2	8.0604e-2	8.1875e-1	0.482	9.9430e-1	6.501	1807e1	6.3
		3.5257e-0	35548e-1	3.6469r-1	3.4277e-1	3.5300e-1	3.5494r-1	8.3925e-1	0.485	7.666e-1	0.521	5.8930r-1	0.5
	KD	1.796e-3	84780+3	9,2705e-3	8.6250e-5	7.0050a-5	8.9012e-3	2.1799e-0	0.472	54014e-1	0.351	3.4025e-1	6.3
	ER.	3.658e-0	37606r1	1.9796p-1	3.0605e-1	4.5258e-1	4.2903e-0	2:9685r-1	0.579	4.1170e-1	0.438	8.5038e-2	0.3
	G5	100et	11289e-0	1.04156-0	1.1106e-0	1.212%±0	1.2260e-0	7.958Se-0	0.480	7.67824-2	0.368	9.6263e-2	0.3
	PES-	15	16.9	9.5	15.77	11.5	1547	\$4677e-2	0.647	93043e-1	0.625	8.8217e-1	0.4
Franco	107	2.554Ne-1	25kHe-1	2.5364e-1	2.5388e-1	2.5269e-1	23279e-1	246TH-1	0.584	2.0681u-2	0.674	1.0215e-1	0.4
		14903e-0	1.0090e-1	1.1957e-1	1.2979e-1	1.1218e-1	1.189%+1	5.30 Ele-3.	0.290	1.5052r-1	0.392	1.5783e-1	0.0
	RGb:	1.95%a-3	1.99(2)-3	2.0030p-3	2.0658e-5	1.9880e-3	1.9903e-3	1.5638e-2	0.315	34323r-1	0.470	5.9685e-2	6.6
	ER	34000+1	2.8904e-1	3.1215e-1	3.1584e-1	3.4540e-1	3.4525e-0	44003e-0	0.437	2.1509e-2	0.327	1.8005e-1	6.3
	GS.	1876in (1965br I	7,24He-1	7.1350e-1	6.7259e-1	6.8723e-0	7.6637e-3	0.471	5.990%r-1	0.540	1.6238e-1	0.0
	PFS	36	39.43	32	34.7	31	34.77	1.8908e-2	0.676	1.6666e-2	0.679	7.5706e-1	6.3
o'Cussin	HIV	2.70me-1	2.9921e-1	2.9905e-1	2.9429e-1	2.90ttle-1	25109e-1	4.293%r-1	0.439	2.8129e-2	9.666	1.6798e-3	0.7
	*	6478H-2	5.4442+-2	6.349Dr-2	6.4177e-2	6.270te-2	6.2299e-2	8280Fe1	0.517	2.5445r-1	0.586	2.7663e-1	0.5
	KQ:	5.300Fe4	54045e-6	5290H	5.4339e-6	5.4674e-4	54873e-4	9:5873e-0	0.504	92344+1	0.306	9.8231e-1	0.3
	ER.	3.2967e-1	326Hr-1	3.5500e-E	3.5778e-1	4.0000e-1	4.6523r-1	4.7550r-3	0.445	6.6723e-2	0.362	24739r-1	0.4
	GS .	5.986e-1	1425e-1	5.4081e-1	5.3675e-1	5.48IQe-1	5.4670e-1	9.3509e-0	0.507	549031-1	0.457	5.893te-1	0.4
	PFS-	356	107.3	167	108.2	109	308.37	3.7943e-1	0.457	42765e-1	0.440	8.3563e-1	0.6
Leven	HIV:	1469-1	14989-1	1.6425e-1	1.HT9e-1	1.997%-1	1.6268e-1	4.9178e-1	0.552	7.246e-2	0.636	3.7904r-1	6.3
		12014-1	1.1766e-1	1.1985e-1	L1781e-1	1.3140e-1	1.2993e-1	8.7663e-1	0.512	1.6685e-1	0.396	2.2K31-1	0.4
	RGD:	4750hr4	47750r4	4.7885e-4	5.3487e-6	4.71156-4	4.8525e-4	£7973e-0	0.417	6.94321-1	0.467	4.5764r-1	6.3
	ER.	3.00%e-0	3.96Ete-1	2.5352=1	2.5996e-1	2.8130e-1	23193e-1	6.5156e-3	0.705	1.1874e-1	0.415	1.6911e-1	0.3
	GS.	5.50%±1	9.5237e-1	1.0189e-0	1.8155e-0	9.5972e-8	9.7453e-0	930434-2	0.375	34323r-1	0.569	2.5045e-2	9.6
	PFS.	47.5	49.73	40	48.00	41	48.73	44003e-0	0.565	9450th-1	0.509	5.7334e-1	0.4

Potential Limitations – 3/3

Amazon Elastic Compute Cloud (EC2) cores: units totalCost: \$ ram: GB costMonth: \$ ecu: units upfrontCost: \$ extraStorage: GB costHour: \$ totalStorage: GB costGB: \$ defaultStorage: GB costMonth: \$ ssdBacked: boolean usage: hours per mont EC2 BlockStorage Instance Dedication Location Purchase Std. SSD Public Ded. GPU Memory Opt On Linux Based Windows Based Demand Storage Opt Sao Paulo Asia General Oceania Reserved Compute Opt Windows Server RedHat North America Suse Amazon ThreeYears OneYear Linux Term Term EC2.totalCost = EC2.costMonth * Purchase.period +OneYear OneYear OneYear Light Medium Heavy EC2.upfrontCost Excerpted from EC2.costMonth = (Inst.costHour + Inst.dedicatedFee) *[García-Galán et al., 2016] Purchase.signedUsage + BlockS.costMonth BlockS.costMonth = BlockS.extraSpace * BlockS.costGB13

Empirical Guidance – 1/5

How to choose the population for performance evaluation?

- Inconsistent results when including and excluding invalid solutions in the population
- Invalid solutions are unbuildable and thus useless in practice

Considering only valid solutions, *at least*, in the final population

Empirical Guidance – 2/5

Should we keep valid solutions in the initial population?

- Empirical results cannot statistically distinguish three algorithms adopting different initial populations in terms of any quality metric
- SATIBEA is the least and the easiest to build

Using random strategy to generate the initial population

Empirical Guidance – 3/5

Should we fix invalid solutions after mutation?

 Experimental results on six subjects demonstrate the superiority of SATIBEA among three algorithms adopting different mutation operators.

Adopting a lower mutation rate (0.001) and a lower probability (0.02) to fix a solution to be valid after mutation

Empirical Guidance – 4/5

Should we preserve valid solutions all along the way?

- Valid solutions must be preserved all along the way for AmazonEC2
- For the other subjects without attribute constraints, SATIBEA works better for 4 out of 6 subjects.

Preserving valid solutions all along the way might not always be necessary.

Empirical Guidance - 5/5

Should we preserve invalid solutions during the search?

Whether or not to preserve invalid solutions deserves more attention in SBSE, and in some cases, we have to preserve valid solutions all along the way during the search.

Conclusion

- Open question: Should we preserve invalid solutions during the search?
- Three potential limitations of preserving invalid solutions
 - No guarantee to produce valid solutions
 - Evaluation results might be misleading
 - Complex attribute constraints break the fitness calculation based on simple aggregation
- Empirical guidance on how to preserve valid solutions
 - Considering only valid solutions, at least, in the final population for evaluation
 - Using random strategy to generate the initial population
 - Adopting a lower mutation rate and a lower probability to fix a solution to be valid
 - Preserving valid solutions all along the way might not always be necessary
- Take-home message: Whether or not to preserve invalid solutions deserves more attention in SBSE, and in some cases, we have to preserve valid solutions all along the way during the search.
- See paper for:
 - Detailed experimental setup and results
 - Threats to validity & Future work

Thanks for your attention!

https://github.com/jmguo/balanceValidity/